Восемь высокопроизводительных Python-библиотек в копилку разработчикам

Когда в 1991 году Гвидо ван Россум представил миру Python, никто не мог предсказать, какое место через несколько десятилетий этот язык займет в веб-разработке, Data Science и Machine Learning. Сейчас Python продолжает развиваться: с новым поколением инструментов в прошлое уходят традиционные ограничения — производительность, GIL и сложность параллельных вычислений.
Привет, Хабр! С вами Леша Жиряков, я руковожу бэкенд-направлением витрины KION, возглавляю гильдию по Python и пишу для блога MWS на Хабре. Я каждый день сталкиваюсь с вызовами высоконагруженных систем и сформировался пул инструментов, которые помогают решать критические проблемы современной разработки — от обработки данных с Polars до управления зависимостями с UV.
В этом материале я сделаю обзор Python-библиотек, с которыми можно создавать системы, сравнимые по производительности с Go и Rust.


















