Почему мы до сих пор спрашиваем про пирамиду тестирования образца 2010 года
Провожу собеседования на позиции тестировщиков уже много лет. И заметил странную вещь: вопросы по теории не меняются вообще. Те же классы эквивалентности, те же граничные значения, та же пирамида тестирования. Как будто за окном не 2026 год, а 2010.
При этом реальная работа изменилась радикально. Половина команды использует нейросетевых агентов для генерации тестов. Автоматизация пишется в паре с ассистентом. Тест-дизайн делается через промпты. А на собеседовании мы всё ещё спрашиваем "чем отличается верификация от валидации".
Я не говорю, что классика не нужна. Нужна. Но если человек не понимает, как работать с агентами в 2026 году, он будет отставать от коллег с первого дня.
Поэтому собрал 10 тем, которые, на мой взгляд, пора добавить в раздел "теория тестирования" на собеседованиях. Полезно и тем, кто нанимает, и тем, кто ищет работу.
1. Промпт-инжиниринг для тестировщика
Как правильно формулировать запросы к нейросети, чтобы получить качественные тест-кейсы, а не общие фразы. Какая структура промпта даёт лучший результат. Почему "напиши тесты для этой формы" работает хуже, чем детальное описание контекста и ожиданий.
2. Валидация результатов работы агента
Нейросеть может ошибаться, галлюцинировать, выдавать устаревшую информацию. Как проверять то, что сгенерировал агент. Какие типичные ошибки встречаются. Почему нельзя просто копировать результат без проверки.
3. Границы применимости нейросетей в тестировании
Что агенты делают хорошо: генерация типовых тестов, анализ логов, написание документации. Что делают плохо: исследовательское тестирование, оценка пользовательского опыта, понимание бизнес-контекста. Когда стоит использовать агента, а когда лучше сделать руками.
4. Работа с контекстом
Как правильно передавать агенту информацию о проекте. Что такое контекстные файлы и зачем они нужны. Почему один и тот же запрос в разных условиях даёт разные результаты. Как не потерять контекст в длинном диалоге.
5. Этика использования нейросетей
Можно ли отправлять агенту конфиденциальные данные проекта. Как работать с чувствительной информацией. Что происходит с данными, которые вы отправляете. Политики компаний относительно использования внешних сервисов.
6. Интеграция агентов в процесс тестирования
Как встроить работу с нейросетью в существующий рабочий процесс. На каких этапах агент полезен: планирование, написание тестов, анализ результатов, документирование. Как не превратить это в дополнительную работу вместо экономии времени.
7. Оценка качества сгенерированных тестов
По каким критериям оценивать тесты, которые написал агент. Покрытие, читаемость, поддерживаемость, соответствие стандартам команды. Как отличить хороший сгенерированный тест от плохого.
8. Работа с разными типами агентов
Чем отличаются агенты для разных задач: генерация кода, анализ требований, работа с документацией. Какой инструмент выбрать для какой задачи. Как комбинировать несколько агентов в работе.
9. Ограничения и риски
Что может пойти не так при использовании агентов. Зависимость от внешних сервисов. Проблемы воспроизводимости результатов. Риск снижения собственной квалификации при чрезмерном делегировании. Как минимизировать эти риски.
10. Критическое мышление в эпоху нейросетей
Почему важно понимать, что делает агент, а не просто использовать результат. Как развивать экспертизу, когда рутину делает машина. Почему человек с глубоким пониманием предмета получит от агента лучший результат, чем новичок.
Это не замена классической теории тестирования. Это дополнение, которое отражает реальность 2026 года. Если кандидат знает только классику, он справится. Если знает и классику, и современные инструменты, он будет эффективнее с первого дня.
А какие темы про работу с нейросетями вы бы добавили в собеседование?